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a b s t r a c t

In this work, multivariate calibration based on partial least squares (PLS) and support vector regression
(SVR) using the whole spectrum and variable selection by synergy interval (siPLS and siSVR) were
applied to NIR spectra for the determination of animal fat biodiesel content in soybean biodiesel and B20
diesel blends. For all models, prediction errors, bias test for systematic errors and permutation test for
trends in the residuals were calculated. The siSVR produced significantly lower prediction errors
compared to the full spectrum methods and siPLS, with a root mean squares error (RMSEP) of 0.18%
(w/w) (concentration range: 0.00%–69.00%(w/w)) in the soybean biodiesel blend and 0.10%(w/w) in the
B20 diesel (concentration range: 0.00%–13.80%(w/w)). Additionally, in the models for the determination
of animal fat biodiesel in blends with soybean diesel, PLS and SVR showed evidence of systematic errors,
and PLS/siPLS presented trends in residuals based on the permutation test. For the B20 diesel, PLS
presented evidence of systematic errors, and siPLS presented trends in the residuals.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Biodiesel is currently the main substitute of petroleum diesel oil
due to its similar characteristics; it has been used in many countries
as diesel engine fuel, usually in mixtures of up to 20%(v/v) in diesel
oil, which is also called B20[1].

It is necessary to highlight that some low temperature proper-
ties (i.e., pour point, cloud point and cold filter plugging point –

CFPP) of biodiesel/diesel blends vary according to the biodiesel
raw material; this variation can be a critical issue depending on
the region of use of fuel and the climate temperature. The lower
the climate temperature, the lower the pour point, cloud point and
the cold filter plugging point should be to avoid faults related to
engine fuel quality[2].

The vegetable oil or animal fat transesterification reaction
produces a mixture of methyl esters. Depending on the biodiesel
raw material used, it contains different amounts of long saturated
carbon chain methyl esters, which tend to increase the pour point,
cloud point and CFPP. As the animal fat has a relatively high
content of saturated fatty acids, this biodiesel raw material leads to
high contents of saturated carbon chain esters. In this manner, the
raw material used to produce the biodiesel determines its low

temperature quality properties, limiting the use of animal fat
biodiesel to relatively cold climates.

This issue is especially important in the use of diesel fuel with a
high content of biodiesel, such as B20, in order to avoid engine failures
including difficulty starting the engine and clogging fuel filters. In
Brazil, the biodiesel produced using soybean oil and animal fat as raw
materials represents approximately 90% of the total production in
2012. The use of animal fat has been increasing due to several
attractive aspects such as lower cost and abundant availability.
Normally, the soybean biodiesel and animal fat biodiesel blends are
commercially available and used to produce B20 diesel fuel, but
depending on the mixture proportions and the operational tempera-
tures, these blends can cause the cited engine operational failures.

The development of practical and reliable analytical methods
for the determination of animal fat biodiesel content in soybean
biodiesel or diesel B20 can facilitate the quality control of fuel.
Also, it can avoid operational failures related to the quality of fuel
in diesel engine vehicles.

Because of expansion of biodiesel production, several studies
have been developed to determine quality parameters [3–10],
either in biodiesel blends or biodiesel/petro diesel blends [11–17].
Near infrared spectroscopy (NIR) combined with partial least
squares (PLS) regression has produced feasible results for analysis.
However, other regression techniques, such as support vector
regression (SVR), have been gaining attention due to their robust-
ness, generalisation capabilities and ability to model nonlinear
relationships [18–20].
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Considering the large number of variables involved in NIR spectra,
variable selection based on spectral regions can improve the perfor-
mance of the calibration model in relation to ones that employ the
whole spectrum. Norgaard et al. [21] proposed a deterministic method
for the selection of spectral regions in PLS models, in which the
spectrum is divided into equidistant intervals. A combination of
several intervals is then performed, leading to better predictions. This
method was called the synergy interval or siPLS. The same interval
selection idea can be used in the development of SVR models in an
approach called siSVR, in which the combination of spectral regions
can improve overall robustness with respect to the accuracy of the
model where the whole spectrum is used.

Given the importance of the control of fuels containing animal fat
biodiesel, this paper aims to apply multivariate calibration based on
PLS and SVR using the full spectrum and variable selection by synergy
interval in NIR spectra to quantify the content of animal fat biodiesel in
blends with soybean biodiesel and B20 diesel. In addition, systematic
errors were assessed by the bias test and trends in residuals of the
developed models by the permutation test.

2. Data analysis

2.1. Calibration models

PLS regression [22–27] is the most common multivariate
calibration method used to relate spectral information, such as
NIR, to some properties of interest. Its theory has been widely
described in the literature, and it is available in many chemometric
packages. Hundreds of applications had been presented with
excellent performance, but as the method is based on linear
parameters, it has difficulty modelling non-linear trends or
multi-class data. In this sense, SVR has proven to be an excellent
alternative to PLS in such situations because it can address non-
linear relationships and possesses excellent generalisation ability.

The SVR is a nonlinear regression method developed as an
extension of the theory of support vector machines (SVM) used for
binary classification problems [28–31]. From the data set
ðx1; y1Þ;⋯; ðxn; ynÞ
� �

with xARm and yAR, the SVR aim is to find
a function

f ðxÞ ¼ 〈w;ϕðxÞ〉þb ð1Þ

where the input vectors x are mapped into a high-dimensional
feature space Z through some nonlinear mapping, ϕ:xi-zi and
the parameters w and b are estimated by minimising the reg-
ularised risk function Rf

Rf ¼
1
2
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The parameter ν controls the number of support vectors, called
ν-SVR. The constant C40 considers the error function ðξi; ξni Z0Þ,
which is enclosed by a tolerance ε, described by loss function
ε-insensitive

LðεÞ ¼
0 if ; jLðεÞ� f ðxÞjoε
LðεÞ� f ðxÞ otherwise

(
ð4Þ

Applying the Lagrange multipliers and solving the quadratic
optimisation problem given in Eq. (2), the regression function is

obtained

f ðxÞ ¼ ∑
m

i ¼ 1
ðαn

i �αiÞKðxi; xÞþb ð5Þ

where αi and αn

i represent the Lagrange Multipliers. An important
step in modelling is the mapping of the original data into a feature
space of high dimensional data by a kernel function. Thus, the
mapped data are analysed using conventional linear statistics in
the feature space, which is equivalent to nonlinear analysis in the
original space. Eq. (5) Kðxi; xÞ represents the kernel mapping of the
original data given by

Kðxi;xjÞ ¼ 〈ϕðxiÞ;ϕðxjÞ〉: ð6Þ
The radial basis function (RBF) [32] is the kernel most used in

SVR and is represented by

Kðxi;xjÞ ¼ expð�γjjxi�xjjj2Þ ð7Þ
where the γ parameter should be set by the analyst during modelling.

2.2. Accuracy assessment

The root mean squares error of prediction (RMSEP) expresses
the accuracy [33] of the model. It reports the closeness of
agreement between the reference value and the value found by
the model

RMSEP¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i ¼ 1

ðyref ;i�yest;iÞ2
n

s
ð8Þ

where yref is the reference concentration value for each of the n test
samples and yest is the concentration value estimated by the model.

A comparison of the model accuracy can be evaluated by an
F-test, according to the equation

Fcalc¼ RMSEP2
1

RMSEP2
2

ð9Þ

where RMSEP14RMSEP2. The calculated Fcalc value is compared
with the value of the Fisher–Snedecor distribution (F-statistic)
with degrees of freedom equal to the number of prediction
samples and an adopted significance level of 5% (α¼0.05). If the
tabulated value of the F-statistic is less than Fcalc, there is no
statistical evidence of homogeneity of the values, and the method
with RMSEP2 presents better accuracy.

2.3. Systematic error assessment

The term bias is attributed to systematic errors that are
calculated by the difference between the population mean and
the true value and are all components of error that are not
random. The average bias for the validation set can be calculated
by Eq. (10) [34]

bias¼∑n
i ¼ 1ðyref ;i�yest;iÞ

n
ð10Þ

The standard deviation of the validation errors (SVD) is obtained as

SVD¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1 ðyref ;i�yest;iÞ�bias
h i2� �

n�1

vuuut
ð11Þ

The t-test for the validation samples is used for bias assessment

t ¼ jbiasj ffiffiffi
n

p

SVD
ð12Þ

The t-calculated is compared with the t-tabulated of the
t-student distributionwith n�1 degrees of freedom and a significance
level of α¼0.05. If the t-calculated presents a value greater than its
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critical value, there is an indication that systematic errors are present
in the model.

2.4. Trends in residuals assessed by the permutation test

In correctly adjusted calibration models, it is expected that the
residuals (difference between the reference or true value and the value
estimated by the model) remain roughly uniform in size as the
measured value increases and is normally distributed about zero.

In this sense, a test was applied to verify the presence of the
quadratic trend in the distribution of residuals as a function of the
measured value. Other forms of trends other than quadratic can
also be evaluated; however, in this work, only the quadratic trend
was tested because this behaviour was observed in the multi-
variate models of this work.

The presence of trends in residuals generated by the multivariate
model was assessed by a permutation test. The test is based on a
repetitive reordering of the measured values, keeping the order of the
residuals related to each estimated value unchanged [35].

The first step of the test is to adjust a second order polynomial
function between the residuals (e) of the model and the measured
values (yi)

eðyiÞ ¼ b0þb1yiþb2y2i ð13Þ

Null and alternative hypotheses can be established: H0: pre-
diction residues do not follow a quadratic trend, but H1: residues
follow a quadratic trend.

From the adjusted Eq. (13), if the coefficient b2 is significantly
different from zero at a specified significance level, there will be
evidence of a trend in the residuals. A permutation algorithm was
developed to perform this test and consists of the following steps:

(i) coefficient b2 is calculated by least squares and named b2n;
(ii) y is permuted randomly, maintaining the unchanged order of

the residuals;
(iii) a new coefficient b2 is calculated from the new permuted y

and residuals;
(iv) steps (ii) and (iii) are repeated k times;
(v) p-value is determined by the ratio of the number of times that

b2Zb2n and k. If the p-value is greater than the level of
significance α¼0.05, there is evidence to accept H0 and that
the residuals do not present a quadratic trend. Otherwise,
there is a trend in the residuals. All calculations were
performed in Matlab version R2009a.

3. Experimental

A total of 99 binary blends of animal fat biodiesel and soybean
biodiesel were initially prepared, with concentrations of animal fat
biodiesel ranging from 0% to 69%(w/w). In a second step, these 99
blends were mixed with S50 diesel fuel oil (petro diesel containing
a maximum of 50 mg/kg of sulphur) in a fixed 20% of biodiesel
blends and 80% of petro diesel, generating the B20 diesel fuel.
Afterward, the animal fat biodiesel content in the diesel B20
ranged from 0.00% to 13.80%(w/w), and the soybean biodiesel
content in diesel B20 ranged from 6.20% to 20.00%(w/w).

NIR spectra were obtained using a Perkin Elmer 100N spectro-
meter equipped with a liquid transflectance accessory in the range
of 9000 to 4000 cm�1, with a resolution of 4 cm�1 and 32 scans
per sample. Samples were measured in duplicate, and the average
spectrum was used for building of calibration models.

The samples were randomly divided into two groups: 59 for
calibration and 40 for prediction. Firstly, the NIR spectra were
preprocessed using multiplicative signal correction (MSC) [36].
“k-fold” procedure was used to optimise the models. It consists of

splitting the total dataset into kmutually exclusive subsets of the same
size. A subset is used for testing (validation samples), and the
remaining k�1 is used for model development (calibration samples).
This process is performed k times until all subsets have been tested. At
the end of k iterations, the root mean square error of cross-validation
(RMSECV) is calculated, generating a more reliable measure of the
predictive ability of the model for future samples.

PLS models were built with mean-centered spectra and refer-
ence vector (biodiesel of animal fat or soy contents) auto-scaled.
The optimal number of latent variables that minimise the RMSECV
was achieved according to the cross-validation “7-fold” procedure.
The PLS model was built using routines from the PLS Toolbox
6.7 for Matlab [37], and the siPLS model was developed based on
the same data sets using the iToolbox [38]. Models were developed
using the full spectrum divided into 5, 10 and 20 equally spaced
intervals and were combined in two intervals.

The SVR model was developed using the LIBSVM routine for
Matlab [39]. The spectral data matrix and the vector containing the
biodiesel from animal fat (or soy) content was normalized in the
range of 0–1. The Radial Basis Function was used as a kernel
function, and a grid search was used to optimise the SVR para-
meters C, ν and γ, through the “7-fold” cross-validation. In the
siSVR model, a grid search was also used to optimise the parameters
C,
ν and γ, based on a “7-fold” cross-validation, with routines devel-
oped in the laboratory. The same number of intervals and the
combination of them tested in siPLS were applied in siSVR.

The linear fit of the adjusted line between the reference values
against the predicted ones were assessed by the coefficient of
determinationR2

R2 ¼ 1�∑iðyi� ŷiÞ2
∑iðyi�yiÞ2

ð14Þ

where yi is the average value of prediction, yi is the reference value
and ŷi is the prediction value.

4. Results and discussion

4.1. Spectral analysis

Fig. 1 presents the NIR spectra of animal fat biodiesel with 31%
(w/w) soybean biodiesel, pure soybean biodiesel and diesel B20
with 20%(w/w) of soybean biodiesel, split into 10 equidistant
intervals used in the construction of siPLS and siSVR models. The
numbers 1–10 refer to the interval number.

In the interval number 10, an absorption band approximately
4069 cm�1 with a higher intensity for animal fat biodiesel is observed.
This region is relative to the C3H deformation associated with the
linear aliphatic, which is also associated with the lowest number of
unsaturation in the animal fat biodiesel. Another difference can be
observed in the spectral region of interval number 9 approximately
4662 cm�1. This difference is related to C3H stretching, a CåO
stretching combination and a C3H deformation combination, with a
higher intensity for soybean biodiesel. In interval number 7, an
absorption band at approximately 5865 cm�1 is observed and is
related to the second overtone of the C3H of the methyl terminal
group, with a lower intensity for diesel B20.

4.2. Quantification of animal fat biodiesel content in blends with
soybean biodiesel

Firstly, models were developed to quantify the animal fat
biodiesel blends with soybean diesel because this knowledge is
important to control the raw materials for biodiesel production.
The results obtained using PLS, SVR, siPLS and siSVR for calibration
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(in a cross-validation approach) and prediction are presented in
Table 1. For all methods tested, it can be observed that the values of
RMSECV and RMSEP are similar, indicating no overfitting in the
models. The best results were obtained using the variable selection
procedure, with a RMSEP of 0.25%(w/w) and 0.18%(w/w) for the siPLS
and siSVRmodels, respectively. A reduction in error of more than 50%
was achieved by using the variable selection, demonstrating the
importance of adequately choosing the spectral interval. In addition,
an F-test performed for accuracy comparison between siPLS and
siSVR (Fcal¼1.934F-statistic ðv1 ¼ v2 ¼ 40; α¼ 0:05Þ ¼ 1:69Þ indi-
cated that the difference between the RMSEPs of these two models
is statistically significant, with the siSVR model being more accurate.

To assess the systematic errors of the models, a test for bias
significance was performed, and for all models, no systematic
errors were found using the expression presented in Eq. (12).

The calibration and prediction residuals as a function of the
measured value for each model are shown in Fig. 2, where the
residuals for models with variable selection are smaller than
the models using the full spectra. It also can be noted that the
prediction residuals for the PLS and siPLS models have a quadratic
trend, which underestimates of the results at the beginning and
end of the curve, while, in the central part, the results are
overestimated. For correctly adjusted models, it is expected that
the residuals remain the size roughly uniform as the measured
value increases and normally distributed about zero; thus, a
permutation test was performed to verify trends in the residuals.

Fig. 3 shows the histograms of the permutation test results
(10,000 permutations), where the distribution of the values of the

permuted coefficients relative to the quadratic adjustment (b2
coefficient of Eq. (13)) is presented; the vertical line is the
coefficient b2 calculated by least squares (b2n) before the permuta-
tion. A p-value is calculated by the ratio of the area to the right
(because the positive quadratic coefficient) of the b2n and the total
area. If the p-value is smaller than the significance level adopted
(0.05 in this work), the quadratic coefficient is significant. In this
case, it was confirmed that the PLS and siPLS models present
evidence of quadratic trends in their residuals, with a p-value of
0.0389 and 0.0001, respectively, while the SVR and siSVR models
presented no evidence of this type of trend in the residuals.

The siSVR model selected intervals 7 and 9. Interval 7 has two
absorption bands: 5797 cm�1 from the first overtone of a C–H
stretch of a hydrocarbon and 5675 cm�1 from the first overtone of
C–H symmetrical stretching of an aliphatic hydrocarbon [40]. Interval
9 contains an absorption band at approximately 4662 cm�1, which is
related to C3H stretching, a CåO stretching combination and a C3H
deformation combination. The siPLS model selected interval 7 as the
template siSVR; interval 8 apparently does not present absorption
bands in the spectrum (see Fig. 1).

4.3. Quantification of animal fat biodiesel content in diesel B20

Table 2 presents the results of the quantification of animal fat
biodiesel content in diesel B20. The strong performance of the
models, except for PLS, can be seen by the high values of the
determination coefficient (above 0.99) for the adjusted line
between the reference and predicted values. It is possible to note

Fig. 1. NIR spectrum of animal fat biodiesel, soybean biodiesel and diesel B20 with 20% of soybean biodiesel, segmented into 10 intervals.

Table 1
Results of calibration models for the quantification of animal fat biodiesel blends with soybean biodiesel.

Model Intervals Calibration Prediction

RMSECV (%m/m) bias (%m/m) R2cv RMSEP (%m/m) bias (%m/m) R2p

PLS (3)a All 0.84 �0.0220 0.9983 0.82 0.0022 0.9983
siPLS (7)a 7 and 8 0.25 �0.0132 0.9998 0.25 0.0065 0.9999
SVR All 0.46 �0.0308 0.9995 0.45 �0.0938 0.9995
siSVR 7 and 9 0.20 �0.0229 0.9999 0.18 �0.0563 0.9999

a Number of latent variables in the model.
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Fig. 2. Plot of the residuals of the multivariate calibration models against the measured values for the determination of the animal fat biodiesel content in blends with
soybean biodiesel. (a) PLS, (b) siPLS, (c) SVR, (d) siSVR. Residuals of the calibration model (◊) and residuals of the prediction model (n).

Fig. 3. Permutation test results for the evaluation of trends in the residuals of calibration models for the quantification of animal fat biodiesel in blends with soybean
biodiesel. (a) PLS, (b) siPLS, (c) SVR and (d) siSVR.
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that even changing the matrix with the addition of petro diesel,
the siPLS model selected intervals 7 and 8, and the siSVR model
selected intervals 7 and 9 (see Fig. 1). However, the bias test
showed evidence of systematic errors at a significance level of 0.05
in the results for PLS and SVR without variable selection. For PLS,
tcal¼2.714t-statistic (ν¼39, α¼0.05)¼2.02, and for SVR, tcal¼
2.314t-statistic(ν¼39,α¼0.05)¼2.02.

The prediction results presented the same trends observed in a
previous calibration, where petro diesel was absent. The calibration
and prediction residuals as a function of the measured value for each
model are shown in Fig. 4, where the residuals for models with
variable selection are smaller than the models using the full spectra.
The lowest prediction errors obtained by the siPLS and siSVR models
with RMSEPs of 0.15%(w/w) and 0.10%(w/w), respectively. An F-test
applied to the RMSEPs of these models with variable selection
showed that the errors are not similar at a 0.05 level of significance
(Fcal¼2.254F-statisticðv1 ¼ v2 ¼ 40; α¼ 0:05Þ ¼ 1:69Þ. This finding
is an indication that the siSVR model produces more accurate results.

The permutation test was conducted to evaluate trends in
residuals of the models. As the above test demonstrated, 10,000
permutations were performed to build the histogram of the
distribution of the b2 coefficient values. In this case, only the siPLS
model showed evidence of quadratic trends in the residuals, with

a p-value of 0.0156, as seen in Fig. 5, which is lower than the
significance level of 0.05.

5. Conclusions

The non-linear multivariate calibration combined with selec-
tion of variables is an adequate methodology for prediction of
animal fat biodiesel content in blends with soybean biodiesel or
diesel B20. The SVR with synergy interval (siSVR) produced
significantly lower prediction errors in comparison with the full
spectrum method or linear approach such as PLS (based on the
full spectrum or interval selection with synergism of intervals).
The siSVR method selected spectral intervals related to the C–H
bond of the aliphatic hydrocarbon and the CåO carbonyl group,
indicating the main variations between samples and correlating
with the type of biodiesel in B20.

The bias test for systematic error analysis and the permutation
test for trends in residuals were applied in all models, even in
those with a high coefficient of determination in the relationship
of reference and predicted values. The PLS method, which is
currently the most used algorithm for this type of modelling,
requires a more careful analysis of the results because there was

Table 2
Results of calibration models for the quantification of animal fat biodiesel in diesel B20.

Model Intervals Calibration Prediction

RMSECV (%m/m) bias (%m/m) R2cv RMSEP (%m/m) bias (%m/m) R2p

PLS (4)a All 0.53 0.0057 0.9829 0.55 �0.0999 0.9817
siPLS (5)a 7, 8 0.16 0.0015 0.9984 0.15 �0.0390 0.9986
SVR All 0.36 0.0179 0.9921 0.29 0.1010 0.9953
siSVR 7, 9 0.16 �0.0162 0.9984 0.10 �0.0213 0.9994

a Number of latent variables in the model.

Fig. 4. Plot of the residuals of the multivariate calibration models against the measured values for the determination of the animal fat biodiesel content in B20. (a) PLS,
(b) siPLS, (c) SVR and (d) siSVR. Residuals of the calibration model (◊) and residuals of the prediction model (n).
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evidence of systematic errors and trends in the residuals in all of
the tested calibrations. These results corroborate the importance
of the evaluation of quality parameters in multivariate calibration
models other than errors of prediction related in RMSEP because
these does not provide information about bias or lack of adjust-
ment of the models. Using the bias test for determining systematic
errors and the permutation test for detecting trends in the
residuals, additional information can be incorporated into the
comparison of models, assisting in choosing the best calibration
methodology.
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